
A Broker for Cost-efficient QoS aware
Resource Allocation in EC2.

 Kurt Vermeersch

 Coordinator: Kurt Vanmechelen

1

Thesis Goal

 Mapping of QoS constrained workloads to
 Amazon pricing models, while trying to
 minimize the total cost.

Broker Seller <-> Buyer

Cost-efficient Minimize cost

QoS aware Constraints

Resource Allocation Scheduler

EC2 Amazon

2

Cloud Computing [1/2]

“Cloud computing is a large-scale distributed
computing paradigm that is driven by economies
of scale, in which a pool of abstracted,
virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services
are delivered on demand to external customers
over the Internet.”

Ian Foster, Cloud Computing and Grid Computing 360-Degree Compared

3

Cloud Computing [2/2]

• Distributed

- location and device independence

• Economies of Scale

- less expensive resources

• Virtualized

- server consolidation

• Dynamically-scalable

- no over or under provisioning

- illusion of infinite amount

- capEx to opEx

4

Amazon Cloud Computing

• Why?

- Knowledge

- Diversification

• What?

- Public : an off-site third-party cloud provider

- IaaS: hardware resources are provided

- Product Portfolio: EC2, S3, etc.

- ECU: equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron

5

Amazon Instance Types

6

Amazon Pricing
• Four Regions

- US East, US West, EU and Asia Pacific

• On-Demand

- Fixed hourly charging rate

- Guaranteed to stay alive

• Reserved

- Upfront payment (1y/3y), lower fixed hourly rate

- Guaranteed to be available for launch

• Spot

- Varying hourly rate

- Instance can be terminated

7

Environmental Analysis

Variation in products, instances and pricing
models complicates the mapping from workload
to optimal resource division

 Pricing Analysis Heuristic

 Workload Analysis Broker

Etc.

8

On-Demand Pricing Evolution

9

On-Demand Region Comparison

10

Reserved Pricing Evolution

11

Spot Analysis

• Spot price history => CSV files

- Cloudexchange.org

- EC2 API

• Statistical analysis of Spot price evolution

- High Memory Extra Large in US-East

• Analysis using average Spot prices

12

Spot History [1/4]

• fluctuating average price

13

Spot History [2/4]

• Aligned boxplot percentiles => outliers

14

Spot History [3/4]

• Only small differences during the day

15

Spot History [4/4]

• Only a little cheaper during the weekend

16

Spot Average [1/3]

17

Spot Average - Regions [2/3]

18

Spot Average – Regions [3/3]

19

Broker Design

20

Workload & Constraints

 W1: total VM W2: Every hour

 hours specified # VMs specified

21

Spot Decision Model

• Based on empirical data

• Checkpointing schemes

- Hourly

- Optimal

• Decision model determines spot bid that
minimizes cost but ensures successful
execution in terms of workload constraints

- Java port: memory problem fix

22

Distributor

• Make division between different pricing models
after scheduling has occurred

- On-Demand vs Reserved -> optimal division possible

- Spot vs Reserved -> optimal choice spot

• Spot is not always the best choice cfr.
constraints.

23

On-Demand vs Reserved [1/3]

24

On-Demand vs Reserved [2/3]

25

On-Demand vs Reserved [3/3]

26

Scheduler

• Capacity fragmentation

• Based on workload model

• Computation intensive

• Basic scheduling vs Optimized scheduling

27

Basic Scheduling (w1)

28

Optimized Scheduling (w1) [1/2]

edfSort(tasks);

for(task t : tasks){

 for(instance i : instances){

 i.addPartTillDeadlineOrEnd(t);

 if(t.isDistributed()){ break; }

 if(i.isLast()) { instances.addNew(); }

 }

}

29

Optimized Scheduling (w1) [2/2]

30

Basic Scheduling (w2)

31

Optimized Scheduling (w2) [1/2]

for(Task t : tasks){

 buckets.divideEqually(t);

}

for(Bucket b : buckets){

 //try all combinations, choose the one

 //that minimizes the number

 //of needed instances

 b.makePlanning();

}

32

Optimized Scheduling (w2) [2/2]

33

What’s next?

• Extend scheduler with a checkpointing cost

• Extend scheduler/broker with spot instances

- Using findings from spot analysis

- Using decision model software

• Evaluate cost cuttings achieved by broker

• A lot of writing!

34

Thank You!

Questions?

Check out
http://www.thesis.kurtvermeersch.com

